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GLOSSARY 

a 	= wave speed (ft/s) 

A = area of cylinder gate Cft2) 

AN = area of needle valve (ft2) 

Ap = area of penstock (ft2) 

AT = area of tower (ft2) 

CDC = coefficient of discharge through cylinder gates 

C
DN = coefficient of discharge through needle valves 

C 	= negative characteristic 

C 	= positive characteristic (ft) 

dH = increment of head (ft) 

dt = increment of time (t) 

g 	= acteleration.Of gravity_(ft/s) 

HE 	= elevation head of. needle valves (ft) 

H
N = needle Valve head(ft) 

H 	= head at beginning of penstock (ft) 

HR  = reservoir elevation head (ft) 

H
T = tower water elevation head (ft) 

N 	= number of needle valves open 

Qc  = discharge through cylinder gate (ft3/s) 

QN  = discharge through needle valves (ft3/s) 

Qp  = discharge through penstock (ft3/s) 

QT  = discharge through intake tower (ft3/s) 



HYDRAULIC CHARACTERISTICS OF AN EMERGENCY CYLINDER GATE CLOSURE 

Background of Prototype Tests 

In 1950 and 1953 prototype tests were conducted at Hoover Dam to determine 

if the intake tower cylinder gates could be closed with a differential 

head across the gates. The tests were designed to measure the hydraulic 

downpull force on the lower cylinder gate at fixed positions over a range 

of differential heads across the gate. Tests were not conducted on the 

upper cylinder gate. 

The 1950 tests were conducted on the original cylinder- gate (fig. 1). The . 

bottom lip of the gate and the gate seat formed a shallow diverging nozzle 

downstream from the point of control. When a cavitation vapor cloud forms 

downstream from the control point, part or all of the gate bottom can be 

subjected to vapor pressure. For the tests, vertical gate openings of 3, 5, 

6, 9, and 15 inches were tested under a reservoir elevation of 1168 ft. 

The tests were conducted by (1) establishing a fixed gate opening without 

flow, (2) controlling the penstock discharge by staging the opening of 

the downstream needle valves, and (3) recording tower water surface and 

hydraulic downpull at set intervals. A maximum hydraulic downpull force 

of 540 kips was measured during the tests. The maximum force occurred at 

the 5-in gate opening (fig. 2). Although the downpull forces measured during 

the tests were not felt to be excessive, all tests were halted with the 

tower water surface at about 1020. The tests were stopped due to observations 

of noise and vibration in the tower. 

Based on the results of the 1950 tests, the bottom edge of the lower gates 

were modified to reduce hydraulic downpull forces during emergency closure 



(fig. 3). Hydraulic downpull tests were conducted on the modified lower 

cylinder gate in 1953. The same test procedure was used as in 1950. Fixed 

gate openings of 3, 5, 9, and 12 inches were tested under a reservoir 

elevation of 1155 ft. A maximum hydraulic downpull of 130 kips at a 3-in 

gate opening was measured during the tests. 

Noise and vibration present during the testing were considered substantially 

less than encountered during the unmodified gate tests. The tower water 

surface was allowed to drop to about elevation 940 ft. Tests were halted 

at that point due to turbulence in the tower water surface endangering 

test equipment. 

Objectives of Current Emergency Closure Studies  

A hydraulic analysis of an emergency closure of the cylinder gates was 

conducted to: 

1. Predict the tower water surface elevation in response to emergency 

closure of the cylinder gates 

2. Estimate hydraulic downpull on the gates under actual closure 

conditions 

3. Determine how hydraulic downpull varies with the mode of operation 

4. Identify possible hydraulic forcing functions capable of exciting 

the gate structure 
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Math Model  

A math model of the hydraulics of the inlet tower, penstock, and needle 

valves was developed to partially meet the above-listed objectives. Pen-

stock laterals and turbines were omitted. The model was developed for 

both single- and double-gate operation. 

Previous mathematical studies conducted by Ball 1/ and physical model studies 

conducted lay Colgate 2/ pointed to flow conditions under the- gate at small 

openings exhibiting cavitation, and flow separation which could not be 

handled in detail. Although assumptions about the flow conditions under 

the gate must be made, where possible, assimilation of prior prototype 

data was used to define the boundary conditions of the model. The math 

model was developed as a transient model based on the method of character-

istics. The intake tower, penstock, and outlets were sectioned as shown 

on figure 4. Above elevation 893 ft the intake tower was treated as a 

single boundary condition. The penstock was then broken into three 600-ft-

long segments for transient computation. The downstream boundary condition 

was defined by four 72-in needle valves discharging free. 

Tower Boundary Conditions  

The upstream boundary condition was defined by the following equations: 

1. Flow through the cylinder gate, 

Qc = CDC  Ac  [2g(HR  _ HT
)]0.5 

1/ Ball, J. W., Unpublished USBR Hoover Dam file No. 225, Book 1, 1955. 
2/ Colgate, M., Unpublished USBR Hoover Dam file No. 225, Book 1, 1955. 



2. Flow in the tower, 

[Q n 	2 _ nAT2(HT_H )]0 5• 
(neglect friction) 

'T 	p 

3. Flow into penstock, 

QP = EQC QT 

4. Definition of the change in the tower water surface, 

dH = (QT/AT)dt 

5. Compatibility equation at the boundary, 

H = CM gA 

All unknowns can be found by simultaneous solution of the five boundary 

equations at time T. By expressing the equations in finite difference 

form using a second order approximation, the boundary equations can be 

solved at time T + dt. Prototype data avilable from the 1953 tests 1/ 

were used to estimate the coefficient of discharge through the cylinder 

gates at small openings. The same coefficient of discharge equations 

were used for both gates (fig. 5). 

Downstream Boundary Conditions  

The downstream boundary was defined by the simultaneous solution of two 

equations: 

1/ Unpublished USBR Data Book, Hoover Dam file No. 225, Book 2, 1955. 

aQp 
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1. Flow through the needle valve, 

QN  = NCDNAN  [2g(HN  - HE)]°* 5  

2. Compatibility equation at boundary, 

aQp 

N P gAp  

There are no calibration curves available for the 72-in needle valves. 

An equation for the coefficient of discharge, figure 6, was developed 

from information on the 84-in Hoover needle valves in conjunction with 

1953 prototype test data. 

Hydraulic Downpull  

Hydraulic downpull on the gates was calculated using pressures at the 

center of the gate opening. Hydraulic downpull was defined as the unbalanced 

force created by the difference between tower hydrostatic pressure and the 

calculated pressure profile, each acting on the horizontal area of the gate. 

For the upper gate configuration, pressures were calculated at five locations 

inward on a radial line on the bottom of the gate leaf. The area between 

adjacent calculated pressure points was assumed to be acted on by a force 

equal to the average of the pressure times the area. 

Insufficient prototype data are available to clearly define the gate loading 

due to cavitation or flow separation occurring along the gate bottom. Both 

conditions can affect the prototype hydraulic downpull forces under sub-

merged conditions. The pressure distribution during cavitating conditions 

presents the greatest influence on hydraulic downpull forces. 



Studies done by Colgate 1/ have shown the formation of a vapor cloud near 

the leading edge of the bottom results in a distorted pressure distribution 

over the downstream gate area. To bracket the pressure distribution on the 

upper gate, two separate cases were studied in the numeric model: 

1. Assume cavitation does not distort the downstream pressure distri-

bution. 

2. Assume if cavitation forms at a point on the bottom of the gate, the 

entire downstream portion of the gate is subjected to vapor pressure. 

During free discharge the gate was considered to be aerated. Minimum pressures 

under the gate were restricted to atmospheric pressure. 

Cavitation has less influence on the lower cylinder gate. The modification 

to the lower gate forces the high-velocity jet to separate sharply from the 

gate bottom. The area of the pressure distribution affected by a vapor 

pressure cloud is significantly reduced. The pressure distribution on the 

lower gate was modeled by treating cavitation as a point source. Pressures 

downstream of the point of separation were calculated based on a linear 

pressure recovery up to hydrostatic conditions in the tower. 

RESULTS 

Simulated emergency gate closures were based on reservoir elevation 1210.0 ft. 

All emergency closures simulated by the model were based on a constant rate 

of cylinder gate closure. A total gate stroke of 9.17 ft in 12.33 minutes 
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was adopted. Steady-state conditions based on the initial discharge through 

the penstock were modeled before emergency closure of the cylinder gates 

was started. 

Three cases of emergency cylinder gate closures were modeled. Both the 

upper and lower gates were modeled separately and during combined operation. 

Tower Water Surface  

Figures 7 through 9 show the dependence of tower water surface elevation on 

cylinder gate opening for upper, lower, and simultaneous dual-gate operation. 

The discharges shown represent steady-state penstock flow established by the 

discharge capacity of the needle valves at the beginning of the tests. 

Case 1. - Upper gate closure with lower cylinder gage closed (fig. 7): 

The upper cylinder gate remains submerged during full closure for initial 

discharges up to about 4000 ft3/s. Severe cavitation on the gate is 

not predicted in this region of operation. At higher discharges a cavi-

tation cloud is expected to occur on the bottom of the gate as the tower 

water elevation falls below 1075.0 ft. The tower water surface within 

the cavitating zone is falling at between 1.5 and 3.0 ft/s over the range 

of discharges shown. The rate of drawdown in the tower water surface 

limits the existence of severe cavitation on the gate to a period of 

10.0 to 20.0 seconds. 
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Case 2. - Lower cylinder gate closure with upper cylinder gate closed (fig. 8): 

The lower cylinder gate remains submerged during full closure for initial 

discharges up to 6000 ft3/s. Fully developed cavitation is expected to 

occur for gate openings of less than 1.0 ft under differential heads 

of greater than 250 ft. 

Case 3. - Simultaneous dual closure of both the upper and lower gates (fig. 9): 

Operation of both gates produces rapid drawdown of the tower water surface 

over the final foot of cylinder gate closure. Both gates can be closed 

under submerged conditions for initial discharges less than 4000 ft3/s. 

The lower tower gate remains submerged for flows up to 6000 ft3/s. Strong 

cavitation occurs on the gates in zones similar to those identified for 

single-gate operation. Strong cavitation is expected to occur on the 

upper gate for a period of 5 to 10 seconds before the jet breaks free. 

Hydraulic Downpull Forces  

.Case 1. - Upper cylinder gate closure with lower cylinder gate closed (figs. 10 

and 11): 

Figure 10 shows the predicted hydraulic downpull under the assumption 

of point cavitation. The gate operates under a nearly constant hydraulic 

downpull until the tower water surface starts falling rapidly. After 

the jet breaks free, hydraulic uplift on the gate can occur. 
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Hydraulic downpull forces, assuming cavitation subjects the entire down-

stream portion of the gate to vapor pressure, are shown on figure 11. 

Within the cavitation zone, large increases in the hydraulic downpull 

forces occur. A maximum hydraulic downpull of 375 kips occurs for initial 

discharge of 6100 ft3/s at a 0.43-ft gate opening. 

Case 2. - Lower cylinder gate closure with the upper cylinder gate closed 

(fig. 12): 

The treatment of pressure recovery and cavitation on the modified gate 

produces smaller downpull forces than obtained for the upper gate. Highest 

hydraulic downpull forces act on the gate at gate openings of less than 

1.0 ft. Maximum hydraulic downpull forces predicted fall under 300 kips. 

Case 3. - Simultaneous dual closure of both the upper and lower cylinder 

gates (figs. 13-15): 

Figures 13 and 14 show the hydraulic downpull forces acting on the upper 

cylinder gate during emergency closure of both upper and lower gates. 

Downpull forces given on figure 13 were formulated assuming cavitation 

does not distort the pressure distribution under the gate. In contrast, 

hydraulic downpull forces calculated assuming a full cavitation vapor 

cloud under the gate are shown on figure 14. Similar to upper gate 

operation alone, large spikes arise in the downpull force during operation 

in the cavitation zone. Again, due to rapid tower water surface drawdown, 

the large forces exist for short periods of time. 

The range of predicted downpull forces on the lower gate during emergency 

dual-gate closure are shown on figure 15. The progressive. buildup and 



sharp decay of forces are similar to single-gate operation, but of lower 

magnitude. 

COMMENTS ON FORCING FUNCTIONS 

Steady closure of the cylinder gates used in the model does not produce 

transient pressures capable of exciting the gate. A review of literature 

and analysis of flow characteristics under the gate failed to identify a 

hydraulic forcing function capable of producing a sustained periodic 

transfer of energy between the flow and gate. Cavitation and separation 

on the gate can act as extraneous excitation, yielding damped aperiodic 

vibrations. Significant random tower vibration and turbulence within the 

tower water are expected as the tower water level approaches the level of 

the gates. 
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Figure 12. - Hydraulic downpull on 
lower gate. 
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Figure 13. - Minimum predicted hydraulic downpull 
on upper gate - dual-gate operation. 
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Figure 15. - Hydraulic downpull on lower gate - 
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